Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: covidwho-1389380

ABSTRACT

The SARS-CoV-2 virus is a recently-emerged zoonotic pathogen already well adapted to transmission and replication in humans. Although the mutation rate is limited, recently introduced mutations in SARS-CoV-2 have the potential to alter viral fitness. In addition to amino acid changes, mutations could affect RNA secondary structure critical to viral life cycle, or interfere with sequences targeted by host miRNAs. We have analysed subsets of genomes from SARS-CoV-2 isolates from around the globe and show that several mutations introduce changes in Watson-Crick pairing, with resultant changes in predicted secondary structure. Filtering to targets matching miRNAs expressed in SARS-CoV-2-permissive host cells, we identified ten separate target sequences in the SARS-CoV-2 genome; three of these targets have been lost through conserved mutations. A genomic site targeted by the highly abundant miR-197-5p, overexpressed in patients with cardiovascular disease, is lost by a conserved mutation. Our results are compatible with a model that SARS-CoV-2 replication within the human host is constrained by host miRNA defences. The impact of these and further mutations on secondary structures, miRNA targets or potential splice sites offers a new context in which to view future SARS-CoV-2 evolution, and a potential platform for engineering conditional attenuation to vaccine development, as well as providing a better understanding of viral tropism and pathogenesis.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , MicroRNAs/metabolism , RNA, Viral/chemistry , 3' Untranslated Regions , Base Sequence , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Databases, Genetic , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Mutation , Nucleic Acid Conformation , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA Splice Sites , RNA Splicing , SARS-CoV-2 , Sequence Alignment , Viral Nonstructural Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Nat Genet ; 53(2): 205-214, 2021 02.
Article in English | MEDLINE | ID: covidwho-1023961

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Epithelial Cells/metabolism , Animals , Binding Sites , Cells, Cultured , Chlorocebus aethiops , Exons , HEK293 Cells , Humans , Interferons/immunology , Protein Binding , Protein Isoforms/genetics , RNA Splice Sites , RNA-Seq , Respiratory System/cytology , Spike Glycoprotein, Coronavirus/metabolism , Transcriptome , Up-Regulation , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL